Environmental Assessment

Bridge Boulevard Reconstruction
Coors Boulevard to 8th Street

Bernalillo County, New Mexico

October 2015
Environmental Assessment

Bridge Boulevard Reconstruction

Coors Boulevard to 8th Street

Bernalillo County, New Mexico

CN A300501

October 2015

This environmental assessment is submitted pursuant to 42 U.S.C. 4332(2)(c) and the New Mexico Department of Transportation’s Location Study Procedures by the US Department of Transportation, Federal Highway Administration, New Mexico Division, and the New Mexico Department of Transportation.

The following people may be contacted for additional information about the Bridge Boulevard Reconstruction project.

- Greg Heitmann
 Environmental Specialist
 FHWA New Mexico Division
 4001 Office Court Dr., Ste. 801
 Santa Fe, NM 87505
 (505) 820-2027

- Ray Chavez
 Local Government Coordinator
 NMDOT District 3 Office
 P.O. Box 91750
 Albuquerque, NM 87109
 (505) 798-6708

- Blake Roxlau
 Environmental Bureau Chief
 NMDOT General Office
 PO Box 1149
 Santa Fe, NM 87504
 (505) 827-1583

Comments regarding this Environmental Assessment are requested by 30 days after Date of Approval listed above. Please send all comments to: Kelly Sims, HDR Engineering, Inc., 2155 Louisiana Blvd. NE, Suite 9500, Albuquerque, NM 87110 kelly.sims@hdrinc.com, Fax: (505) 830-5454
Table of Contents

Preface ... iii

Executive Summary ... 1

1 Introduction ... 3
 1.1 Project Location ... 4

2 Purpose and Need .. 6

3 Alternatives Considered ... 8
 3.1 No-Build Alternative .. 8
 3.2 Alternatives Considered and Dismissed .. 9
 3.2.1 Flexible Lanes Alternative .. 9
 3.2.2 Multi-Way Boulevard Alternative ... 10
 3.3 Preferred Alternative .. 11

4 Roadway Operations .. 12
 4.1 Traffic .. 12
 4.1.1 Safety ... 14
 4.1.2 Pedestrian, Bicycle, and Transit Accommodations 14

5 Existing Conditions and Environmental Consequences ... 15
 5.1 General Project Setting ... 15
 5.1.1 Climate .. 15
 5.1.2 Physiography and Geology .. 16
 5.1.3 Soils .. 16
 5.2 Wetlands and Waterways ... 18
 5.2.1 Water resources ... 18
 5.2.2 Wetlands .. 18
 5.3 Floodplains .. 20
 5.4 Threatened/Endangered Species and Other Biological Resources 20
 5.4.1 Vegetation .. 20
 5.4.2 Wildlife .. 21
 5.4.3 Threatened and Endangered Species .. 21
 5.5 Land Use ... 24
 5.6 Utilities ... 25
 5.7 Farmland ... 25
 5.8 Rights Of Way, Land Transfers, and Relocations ... 26
 5.9 Social and Economic Impacts .. 26
 5.9.1 Environmental Justice .. 26
 5.9.2 Communities and Neighborhoods .. 28
 5.9.3 Economic Profile ... 30
 5.10 Noise .. 30
 5.11 Air Quality ... 30
 5.12 Historic Preservation ... 31
 5.13 Section 4(f) ... 32
 5.14 6(f) Properties ... 32
 5.15 Visual Resources ... 32
Preface

In 2011, the Bernalillo County Public Works Division (BCPWD) began a process to develop the Bridge Boulevard Corridor Redevelopment Plan for the section of Bridge Boulevard between Coors Boulevard and the Barelas Bridge. The purpose of the plan was to identify strategies to support livability principles within the local community while effectively moving regional traffic through the corridor. The Plan was adopted by the Bernalillo County Board of Commissioners in 2013 and included zoning updates, roadway infrastructure recommendations, the identification of catalytic areas with redevelopment potential, and proposed phasing for improvement implementation.

The planning project was funded by a joint U.S. Department of Transportation/U.S. Department of Housing and Urban Development TIGER II/Community Challenge Planning grant, which requires an Environmental Document pursuant to the National Environmental Policy Act (NEPA) and Federal Highway Administration NEPA guidelines. Therefore, the BCPWD, in cooperation with the FHWA and New Mexico Department of Transportation (NMDOT), has initiated an Environmental Assessment (EA) pursuant to NEPA for the reconstruction of Bridge Boulevard from Coors Boulevard to 8th Street.

The EA will focus on broad issues for the entire project corridor, including purpose and need, general location of alternatives, and decision points required for each phase of roadway reconstruction. No construction related activities will be authorized as a result of approval of the EA.

Subsequent environmental re-evaluations will be conducted for each phase of the proposed project. The re-evaluation documents will address site-specific designs, project impacts, costs, mitigation measures, and any necessary design adjustments. The re-evaluation documents will be the decision documents that would authorize construction activities.

Approximately $24,093,540 is programmed in the NMDOT Fiscal Year 2014 – 2019 Statewide Transportation Improvement Program. The programmed funds include a local match of $3,508,019 and Surface Transportation Program funding of $20,585,521. It is anticipated that the BCPWD will secure additional funding to complete reconstruction of the entire corridor.
This page intentionally left blank.
Executive Summary

Bernalillo County Public Works Division (BCPWD), in cooperation with the Federal Highway Administration (FHWA) and New Mexico Department of Transportation (NMDOT), proposes to reconstruct Bridge Boulevard from Coors Boulevard to 8th Street. Traffic between Coors Boulevard and Old Coors Drive would be redirected to a reconstructed Tower Road, which is identified as a principal arterial in the 2015 Long Range Transportation System Guide (MRCOG 2015). Transportation system improvements to Bridge Boulevard would help to maintain acceptable traffic flow, increase public safety, and enhance mobility for all users in the corridor. In addition, transportation system and mobility infrastructure improvements would directly support sustainable development, as identified in the associated Bridge Boulevard Corridor Redevelopment Plan.

The total project distance is approximately 3.54 miles. Implementation of the full project is expected to be completed in four phases:

- **Phase 1**: Design, and reconstruction of Tower Road from Coors Boulevard to Old Coors Drive and Bridge Boulevard from Old Coors Drive to Goff Boulevard
- **Phase 2**: Design, and reconstruction of Bridge Boulevard from Goff Boulevard to Cannon Road
- **Phase 3**: Design, and reconstruction of Bridge Boulevard from Cannon Road to La Vega Drive
- **Phase 4**: Design, and reconstruction of Bridge Boulevard from La Vega Drive to 8th Street

The preliminary cost estimate to reconstruct the roadway is $24,739,541. Approximately $24,093,540 million is programmed in the NMDOT Fiscal Year 2014 – 2019 Statewide Transportation Improvement Program. The programmed funds include a local match of $3,508,019 and Surface Transportation Program funding of $20,585,521. It is anticipated that the BCPWD will secure additional funding to complete reconstruction of the entire corridor.

This Environmental Assessment (EA) focuses on broad issues for the entire project corridor, including purpose and need and general location of alternatives. The project corridor was evaluated for potential environmental impacts from the proposed project and areas of possible adverse effects were identified for further evaluation and study. No construction related activities will be authorized as a result of approval of this EA.

After reviewing the potential impacts identified within the project corridor, considering the context and setting of the preferred alternative and the fact that most improvements will take place within an existing, urbanized footprint, no significant impacts are noted and all impacts can and will be mitigated.
This page intentionally left blank.
1 Introduction

Bernalillo County Public Works Division (BCPWD), in cooperation with Federal Highway Administration (FHWA) and New Mexico Department of Transportation (NMDOT), proposes to reconstruct Bridge Boulevard from Coors Boulevard to 8th Street. Traffic between Coors Boulevard and Old Coors Drive would be redirected to a reconstructed Tower Road, which is identified as a principal arterial in the 2015 Long Range Transportation System Guide (LRTSG)(MRCOG 2015). The total project distance is approximately 3.54 miles. Implementation of the full project is expected to be completed in four phases:

Phase 1: Environmental authorization, design, and reconstruction of Tower Road from Coors Boulevard to Old Coors Drive and Bridge Boulevard from Old Coors Drive to Goff Boulevard

Phase 2: Environmental authorization, design, and reconstruction of Bridge Boulevard from Goff Boulevard to Cannon Road

Phase 3: Environmental authorization, design, and reconstruction of Bridge Boulevard from Cannon Road to La Vega Drive

Phase 4: Environmental authorization, design, and reconstruction of Bridge Boulevard from La Vega Drive to 8th Street

Design of Phase 1 is underway. Decisions on the sequencing of design and construction of the remaining phases will be dependent on funding and timing of separate concurrent projects within the area.

The focus of this document is to provide an Environmental Assessment (EA) for the project corridor in compliance with the National Environmental Policy Act of 1969 (NEPA) regulations issued by the Council on Environmental Quality (CEQ) (40 CFR 1500-1508), FHWA (23 CFR 771), NMDOT's Location Study Procedures, and other applicable guidelines and regulations. This EA also complies with the U.S. Department of Transportation Order 5610.1C and the guidance provided in FHWA Technical Advisory T6640.8A.

If the EA is approved, the project may advance to phased project design. Environmental documents would be prepared during each phase of the project and would address site-specific project impacts, costs, mitigation measures, and design adjustments including ones that may avoid or minimize environmental impacts.

The preliminary cost estimate to reconstruct the roadway is $24,739,541. Approximately $24,093,540 is programmed in the NMDOT Fiscal Year 2014 – 2019 Statewide Transportation Improvement Program. The programmed funds include a local match of $3,508,019 and Surface Transportation Program funding of $20,585,521. It is anticipated that the BCPWD will secure additional funding to complete reconstruction of the entire corridor.
1.1 Project Location

Bridge Boulevard is a major travel corridor that carries approximately 30,000 cars, trucks, and buses per day across the Rio Grande. It is one of the few east-west river crossings in the South Valley that connects the rapidly growing Southwest Mesa with the destinations on the east side of the Rio Grande and one of only nine river crossings in Bernalillo County. Bridge Boulevard is mostly within unincorporated Bernalillo County, New Mexico, with a portion of the project area lying within Albuquerque city limits. The project limits are Bridge Boulevard SW between Old Coors Drive and 8th Street and Tower Road between Old Coors Drive and Coors Boulevard. The complete project area is shown in Figure 1.
Bridge Boulevard Reconstruction
Project Corridor

Figure 1. Project Corridor
2 Purpose and Need

Transportation system improvements to Bridge Boulevard would help to maintain acceptable traffic flow, increase public safety, and enhance mobility for all users in the corridor. In addition, transportation system and mobility infrastructure improvements would directly support sustainable development, as identified in the associated Bridge Boulevard Corridor Redevelopment Plan.

Roadway and mobility improvements are needed because:

- **Transportation Needs**
 - Bridge Boulevard is the third most congested roadway in the Albuquerque Metropolitan Area. Bridge Boulevard is expected to exceed capacity by 2035.
 - Congestion ranges from insignificant between Atrisco and Goff, to moderate between Goff and Sunset and Isleta to 8th street, to severe between Sunset and Isleta.
 - The intersection of Bridge Boulevard and Tower Road currently operates at a deficient Level of Service (LOS) during the PM peak hour.
 - The intersections of Bridge Boulevard at Tower Road, Sunset Road, and Isleta Boulevard are projected to fail by 2035.
 - The current roadway design does not support mobility for all users, including pedestrian, bicycle or transit modes of transportation.

- **System connectivity**
 - Bridge Boulevard is an important component of the regional transportation system. It is one of the few east-west river crossings in the South Valley to connect the rapidly growing Southwest Mesa and employment and educational destinations on the east side of the Rio Grande.
 - The corridor lacks features such as visible crosswalks, continuous sidewalks, and safe connections and crossings at intersecting trails.
 - Additional roadway capacity is needed on Tower Road to support the principal arterial classification identified in the 2015 LRTSG.
 - Improvements are planned for intersecting roadways and paths, to include sidewalks on Sunset Road between Goff Boulevard and Bridge Boulevard and bicycle and pedestrian improvements along the Isleta drain from I-25 to Bridge Boulevard.

- **Safety**
 - Crash rates along the Bridge Boulevard Corridor are consistently above the regional average. Review of crash reports indicate the
The majority of crashes in this corridor are due to driver inattention and following too close.

- Large curb radii, free-right turn lanes, and irregular geometry at intersections contribute to an existing emphasis on motor vehicle traffic and pose a safety risk to cyclists and pedestrians. Community input from the Redevelopment Plan process identified increased safety measures for pedestrians and cyclists as important elements of the transportation network.

Access

- Bridge Boulevard is classified as a principal arterial and is not currently an access-controlled facility. A number of redundant driveways have been identified for potential consolidation.

Community Development.

- The corridor lacks features such as landscaping, visible crosswalks, continuous sidewalks, and gateways. The existing roadway design does not create an atmosphere that encourages a sense of place associated with vibrant, mixed-use neighborhoods.

- The study area is projected to grow in population by 15% and grow in employment by 54% by 2035.

- The Historic Bridge Main Street, South Valley is a New Mexico MainStreet Program community focused on economic development efforts and providing neighborhood revitalization assistance. Roadway design is a consideration for the program.

- Bridge Boulevard is part of the South Valley Metropolitan Redevelopment Area adopted by the City of Albuquerque and Bernalillo County in 1997.
3 Alternatives Considered

The proposed improvements presented in this EA are based on the conceptual recommendations found in the Bridge Boulevard Corridor Redevelopment Plan (Redevelopment Plan). The Redevelopment Plan was funded by a TIGER II/Community Challenge Planning grant and focused on ways to support livability principles within the local community while effectively moving regional traffic through the corridor. The planning process included a design charrette, a steering committee, and three public meetings to obtain public input and feedback during the development of conceptual roadway plans. Pursuant to regional long range transportation planning, all alternatives developed included diverting traffic on Bridge Boulevard between Coors Boulevard and Old Coors Drive to Tower Road. The Redevelopment Plan was approved by the Bernalillo County Board of Commissioners in 2013. Departments within Bernalillo County and other agencies with jurisdiction or facilities within the corridor reviewed the Draft Redevelopment Plan and comments have been carried forward into this EA.

3.1 No-Build Alternative

The No-Build Alternative proposes no reconstruction or improvements to Bridge Boulevard between Coors Boulevard and 8th Street. In accordance with NMDOT Location Study Procedures and NEPA, the No-Build Alternative must always be considered as a baseline for comparison with other alternatives. With the No-Build Alternative, congestion will continue to worsen and pedestrian facilities would not meet Americans with Disabilities Act (ADA) or Proposed Right of Way Accessibility Guidelines (PROWAG) guidelines.

The No-Build Alternative does not meet the planning needs for maintaining acceptable levels of traffic flow or improving the transportation system within the region. With the No-Build alternative, traffic congestion would increase along the corridor.

Vision for the Corridor

The Bridge Boulevard Corridor is a sustainable main street where residents, visitors, and businesses are able to enjoy a safe, pedestrian-friendly environment that celebrates the agricultural tradition and authenticity of the area.
3.2 Alternatives Considered and Dismissed

3.2.1 Flexible Lanes Alternative

This alternative provided for four flexible through lanes to provide for the current volumes that Bridge experiences for commuter traffic. The flexibility of reversible lanes in the future would also allow for additional lanes in the main traffic flow direction to be provided while reducing the number of lanes in the non-peak direction. The flexible lanes would employ the use of a moveable barrier that would be moved daily to orient lanes to the traffic flow needs. Left turns from Bridge Boulevard would be restricted to reduce impacts to the through movements. Users would need to employ the “South Valley Left,” which involves making a right turn at the desired intersection and performing a u-turn to head in the intended direction.

A two-way protected bike lane known as a cycle track was included in this alternative. The cycle track would allow for bicycles traveling in both directions to be physically separated from the high speed vehicular traffic. This would largely limit the access for bicycles to the businesses on the side opposite the track. It is anticipated that the elimination of the left turn phase from Bridge Boulevard would allow a reallocation of “green time” to accommodate a phase in the signal for bicycle crossings. With the exception of the turn around locations, the flexible lanes would fit within the existing right-of-way. Current and planned land uses suggest that this alternative could be employed from the river crossing to Goff Boulevard.

The flexible lanes alternative would require significant right-of-way (ROW) to accommodate the South Valley Lefts and there was little public support for this alternative at the design charrette. Therefore, the flexible lanes alternative was eliminated from further evaluation.

Figure 2. Typical Section for Flexible Lanes Alternative
3.2.2 Multi-Way Boulevard Alternative

The multi-way boulevard, with through lanes and local frontage roads, would accommodate access to businesses for both commuter traffic and local traffic. The four flexible through lanes would provide for the current through traffic volumes that Bridge Boulevard experiences. The flexibility of reversible lanes in the future would also make accommodating anticipated traffic growth an option. Left turns from Bridge Boulevard would be restricted to reduce impacts to the through movements. Users would need to employ the South Valley Left, which involves making a right turn at the desired intersection and performing a u-turn to head in the intended direction. These u-turn movements would have to accommodate a large truck resulting in a large diameter and the need for relatively large areas for ROW. The elimination of the left turn phase from Bridge Boulevard would allow for the reallocation of “green time” for the signal that accompanies the through direction. This would help significantly increase the corridor’s ability to handle current and future capacity needs.

The local road system would allow for business access, parking and multi-modal access such as transit, pedestrian and bicycle facilities. This slower, local street would be physically separated from the through travel lanes by a raised, landscaped median with spaced access to the through lanes. The local businesses would have very wide sidewalks that would provide for sidewalk cafes or other inviting uses.

The multi-way boulevard would require a significant amount of additional ROW. The planning level analysis assumed that 80’ of additional width would be required in the corridor. This would have a significant impact on adjacent property owners and is estimated to result in the need for acquisition of several entire parcels. The upfront investment for ROW only was anticipated to be in the range of $12,000,000; therefore, the multi-way boulevard alternative was eliminated from further consideration.
3.3 Preferred Alternative

The Main Street option developed at the May 2012 design charrette and refined throughout the planning process was selected for further development, review, and design in accordance with the NMDOT’s Location Study Procedures. This alternative would feature the following:

- Four lanes, primarily within existing ROW
- ADA-compliant sidewalks and ramps
- Bicycle lanes in each direction
- Improved lighting
- Intermittent parking
- Fourteen-foot raised, landscaped median
- Pedestrian refuge islands and high-intensity activated crosswalk (HAWK) signals at mid-block crossings
- Traffic signal or a two-lane roundabout intersection configuration at Bridge Boulevard’s intersection with Isleta Boulevard and Sunset Road/Five Points
- Storm drain improvements

Conceptual plans are provided in Appendix A.

The new Bridge Boulevard alignment would be directed onto Tower Road and existing Bridge Boulevard would be closed at Tower Road. Access to and from the Alamosa neighborhood would be from Rio Vista and Old Coors Drive or from eastbound Bridge Boulevard from Coors Boulevard. A connection from Tower Road to Bridge Boulevard may be considered in the future.

Narrower lanes would have a calming effect on vehicular traffic and would slow down traffic. This alternative provides the future opportunity to reserve one of the general purpose lanes as bus/high occupancy vehicle lanes during peak hours to help to encourage the use of the transit system or carpooling.
This alternative acknowledges that travel times and congestion in the corridor will increase over time. This alternative will be modeled during the pertinent design phases with both roundabouts and traffic signals at two key locations within the corridor, Isleta and Five Points, to determine feasibility. It is anticipated that improved operation of these intersections would help maintain traffic flows without increasing capacity.

4 Roadway Operations

A roadway inventory was conducted as part of the Transportation Assessment for the Redevelopment Plan (Appendix B). The road network immediately surrounding Bridge Boulevard has limited connectivity, forcing most traffic onto Bridge Boulevard for east-west travel. As one of nine river crossings serving the Albuquerque Metropolitan Planning Area (AMPA), the roadway experiences heavy congestion between Sunset Road and 8th Street, carrying approximately 35,000 vehicles per day.

The segment of Bridge Boulevard that makes up the project area is classified by the MRCOG as a principal arterial. Although this classification should accommodate all modes of transportation, the current design mainly supports automobile traffic.

Bridge Boulevard generally has a ROW of 80 feet between Coors Boulevard and Old Coors Drive on the Tower Road alignment; 80 feet between Old Coors Drive and Isleta Boulevard; and 100 feet between Isleta Boulevard and 8th Street. There are four travel lanes between Old Coors Drive and 8th Street with a center turn lane or medians and two travel lanes between Coors Boulevard and Old Coors Drive on the Tower Road alignment. Between Old Coors Drive and 8th Street, there are five-foot sidewalks with curb and gutter and five-foot wide bike lanes on each side of the roadway. On the Tower Road alignment between Coors Boulevard and Old Coors Drive, there are no sidewalks or bicycle lanes. On-street parking is located on both sides of the roadway between Isleta Boulevard and Barelas Bridge. Eight major intersections are signalized at Coors Boulevard, Old Coors Drive, Atrisco Boulevard, Goff Boulevard, Sunset Road/Five Points, Isleta Boulevard, La Vega Drive, and 8th Street. One major intersection is stop-controlled. All major intersections provide pedestrian crosswalks.

4.1 Traffic

The Bridge Boulevard Congestion Management Plan Corridor, as defined by MRCOG, is projected to see a 15% increase in population and a 54% increase in employment by 2035 (MRCOG 2012). As a result, it is estimated that traffic volumes on Bridge Boulevard will exceed motor vehicle capacity through most of the corridor resulting in severe congestion by 2035.

MRCOG’s MTP update for planning year 2040 included an analysis of volume to capacity (V/C) ratio for major roadways within the AMPA using several build scenarios. The No-Build scenario considered V/C if no projects currently
programmed for funding were completed past 2015. The ratios show roadway congestion as acceptable, approaching capacity, over capacity, severely congested 1, and severely congested 2, which can be correlated to Level of Service (LOS). LOS measures driver delay using letters A through F, with A representing no driver delay and F representing significant driver delay. Existing and future no-build V/C ratings and LOS illustrate that traffic volumes and congestion will continue to worsen as population and employment in the region grows. V/C ratings and LOS for 2012, 2025, and 2040 for the No Build Alternative are shown in Table 2.

Table 1. Volume to Capacity Ratio Ratings and Level of Service (LOS)

<table>
<thead>
<tr>
<th>Phase</th>
<th>2012 Peak Hour V/C Ratio Rating and LOS</th>
<th>2025 Peak Hour No Build V/C Ratio Rating and LOS</th>
<th>2040 Peak Hour No Build V/C Ratio Rating and LOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coors Blvd to Old Coors Drive (Phase 1)</td>
<td>Acceptable LOS D or better</td>
<td>Acceptable LOS D or better</td>
<td>Approaching Capacity LOS E</td>
</tr>
<tr>
<td>Old Coors Drive to Atrisco Drive (Phase 1)</td>
<td>Acceptable LOS D or better</td>
<td>Approaching Capacity LOS E</td>
<td>Approaching Capacity LOS E</td>
</tr>
<tr>
<td>Atrisco Drive to Goff (Phase 1)</td>
<td>Acceptable LOS D or better</td>
<td>Acceptable LOS D or better</td>
<td>Acceptable LOS D or better</td>
</tr>
<tr>
<td>Goff Blvd to Sunset Road/Five Points (Phase 2)</td>
<td>Acceptable LOS D or better</td>
<td>Acceptable LOS D or better</td>
<td>Over Capacity LOS F</td>
</tr>
<tr>
<td>Sunset Road/Five Points to Isleta Boulevard (Phases 2 and 3)</td>
<td>Acceptable LOS D or better</td>
<td>Approaching Capacity LOS E</td>
<td>Severely Congested 1 LOS F</td>
</tr>
<tr>
<td>Isleta Boulevard to 8th Street (Phases 3 and 4)</td>
<td>Severely Congested 1 LOS F</td>
<td>Severely Congested 1 LOS F</td>
<td>Severely Congested 2 LOS F</td>
</tr>
</tbody>
</table>

Source: Futures 2040, MRCOG 2014

Except for the intersection at Tower Road and Old Coors Drive, all intersections are currently operating at an acceptable level of service.

There is no access control in the project area. The posted speed for the majority of the project corridor is 35 miles per hour (mph). The posted speed is 40 mph west of Goff.
4.1.1 Safety

Crash rates along Bridge Blvd are almost 50% above the regional average. Between 2007 and 2009, there were 354 reported crashes, 4 of which involved bicyclists and 2 that involved pedestrians, with no trends amongst the bicycle and pedestrian crash locations. The majority of crashes occurred near the busier intersections: Isleta Boulevard (94 crashes), Goff Boulevard (52 crashes), La Vegas Drive (48 crashes) and Sunset Road/Five Points Road (47 crashes). There were no fatal crashes, 76 injury crashes, and 278 property damage only crashes. Approximately 53% of all the crashes were rear end crashes while 16% were same direction sideswipe and 12% were turning crashes (Fehr & Peers 2012).

4.1.2 Pedestrian, Bicycle, and Transit Accommodations

The corridor has a network of historic acequias that serve the agricultural lands near the Rio Grande and are used as paths and trails by the community, although the South Valley has low walking and bicycling rates compared with Albuquerque, Bernalillo County as a whole, and the North Valley. Since 2000, bicycle commuting has increased while walk commuting has decreased (BCPWD 2011).

The project team and agency stakeholders conducted a bike and pedestrian safety audit in January 2012 to evaluate the physical conditions of bicycle and pedestrian facilities in the corridor. Most of the roadway provides bike lanes/shoulders of varying widths and sidewalks; however, visibility issues in some locations create an unsafe environment. With the exception of Isleta Boulevard, sidewalks from the corridor are discontinuous, providing limited access to destinations in proximity of Bridge Boulevard. Other findings for facilities along Bridge Boulevard include:

- Sidewalks are heaving in some areas and have holes where signposts were removed.
- Sidewalks are partially blocked in many areas by bollards, utility poles or bus stop benches.
- A level path is not maintained across many driveways.
- Faded/outdated signal heads make it difficult to view pedestrian signal indications.
- Pedestrian push buttons are small and don’t meet ADA requirements.
- Pedestrian walk time at signalized intersections appears to be inadequate.
- Lack of stop lines on cross streets does not encourage drivers to stop behind crosswalk.
- There are limited bus shelters along the corridor.
- The width of the bike lane is generally 5 feet from center of lane line to the outside edge of gutter, but in some locations it is as narrow as 3.5-4 feet where expansion joints create obstacles for cyclists.
A few traffic signal pull box lids are broken, creating a tripping hazard.

Transit is a critical mode of transportation in the Bridge Boulevard corridor for Environmental Justice communities. The current service frequencies and route structures are oriented to transit “dependent” riders’ housing and destinations. The services provide a general coverage of major destinations. Bridge Boulevard is primarily served by Route 54, which operates east and west from Old Coors Drive across the Rio Grande to 4th Street. While the current route configuration provides transit service through several neighborhoods, it does not provide direct east-west access west of Old Coors Boulevard. Route 53, which is primarily a north-south route, runs along the corridor for a shorter segment, from Isleta Boulevard to 8th Street. Routes 51 and 155 provide key north-south connections from or across Bridge to Central Avenue - ABQ Ride’s most heavily traveled route with 40-45% of the system-wide ridership. Coors Boulevard is also designated as a Premium Quality Corridor by the Westside Long Range Transit Plan, reflecting a “Transit First” policy with the goal of providing linkages among transit centers.

5 Existing Conditions and Environmental Consequences

This discussion is limited to the Preferred Alternative described in Section 3.3. The No-Build Alternative does not meet the purpose and need of the project, and has no effect on the existing natural environment. However, the No-Build Alternative may affect some components of the existing human environment. Traffic congestion would be expected to increase, affecting air quality, and pedestrian safety and accessibility would remain poor or worsen.

5.1 General Project Setting

The project area is in Bernalillo County, in north-central New Mexico, in Albuquerque’s South Valley. Land uses along the project corridor include commercial, residential, agricultural, and some light industrial. Major intersections with Bridge Boulevard include Coors Boulevard, Old Coors Drive, Atrisco Drive, Goff Boulevard, Sunset Drive, Isleta Boulevard, and 8th Street. The project area crosses the Rio Grande river and several acequias. Except for the intersections of Bridge Boulevard and Tower Road/Coors Boulevard, Sunset Road/Five Points, and Isleta Boulevard, proposed improvements would be constrained to existing ROW.

5.1.1 Climate

The Albuquerque Reach of the Rio Grande is classified as semi-arid. The lowest mean annual temperatures occur during January (37.6°F) and its highest annual mean occurs in July (78.9°F). Characteristically, as in other semi-arid areas, the majority of the precipitation falls during the summer “monsoon” season or as winter snow. The average annual precipitation is 9.2 inches, with 5.15 inches falling
between July and October. Relative humidity averages 51 percent for the year and less than 20 percent during the hotter summer afternoons. (Western Regional Climate Center 2009) The Albuquerque metropolitan area on average has 167 cloud-free days and 111 partly cloudy days per year.

5.1.2 Physiography and Geology

The United States Geological Survey (USGS) 7.5-minute Bernalillo quadrangle map for Bernalillo County, New Mexico indicates that the Project Corridor is located approximately 5,020 ft (at Coors Road) to 4,950 ft (at the Rio Grande) above mean sea level (msl). The topography in the Project Corridor consists of the gentle slopes of the inner valley of the Rio Grande.

The Project Corridor is located within the Middle Rio Grande Valley in the southern Rocky Mountains, and is part of the Rio Grande Rift. Multiple faults have been mapped within the Albuquerque city limits, and generally consist of normal faults at high angle, contributing to the horst and graben, dropped block faults of the middle Rio Grande Rift (HDR 2015).

5.1.3 Soils

There are numerous soil mapping units located in the project area, listed in Table 3 below. None of these soil mapping units are designated as prime or unique farmland. (NRCS Web Soil Survey National Cooperative Soil Survey 2015).

Table 2. Project Area Soils

<table>
<thead>
<tr>
<th>Corridor Phase</th>
<th>Map unit symbol</th>
<th>Map Unit Name</th>
<th>Flooding Frequency</th>
<th>Ponding Frequency</th>
<th>Drainage Class Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase 1</td>
<td>BKD</td>
<td>Bluepoint-Kakan association, hilly, 5 to 40 percent slopes</td>
<td>None</td>
<td>None</td>
<td>Somewhat excessively drained to excessively drained</td>
</tr>
<tr>
<td>Phase 1</td>
<td>BCC</td>
<td>Bluepoint loamy fine sand, 1 to 9 percent slopes</td>
<td>None</td>
<td>None</td>
<td>Somewhat excessively drained</td>
</tr>
<tr>
<td>Phase 1</td>
<td>MWA</td>
<td>Madurez-Wink association, gently sloping, 1 to 7 percent slopes</td>
<td>None</td>
<td>None</td>
<td>Well drained</td>
</tr>
<tr>
<td>Phases 1 and 2</td>
<td>VbA</td>
<td>Vinton sandy loam, 0 to 1 percent slopes</td>
<td>None</td>
<td>None</td>
<td>Somewhat excessively drained</td>
</tr>
<tr>
<td>Phase 1</td>
<td>Vc</td>
<td>Vinton clay loam, 0 to 1 percent slopes</td>
<td>None</td>
<td>None</td>
<td>Somewhat excessively drained</td>
</tr>
</tbody>
</table>
The project would include significant soil excavation for utilities and minor grading at various locations to improve vertical curvature. Impacts to soils would primarily consist of construction disturbances and resulting erosion. These potential impacts would be minimized through the National Pollution Discharge Elimination System (NPDES) permit process, which requires a storm water pollution prevention plan (SWPPP) to minimize erosion and sedimentation. Areas of disturbance would exceed one acre, therefore the County and the construction contractor would file a Notice of Intent with the EPA. The contractor would be responsible for preparing a SWPPP that identifies Best Management Practices (BMPs) to minimize soil erosion and transport of sediment and contaminants. The SWPPP would outline erosion control measures such as stabilization practices, storm water management measures, structural controls, and BMPs to mitigate soil erosion. Disturbed areas would be re-vegetated after construction, if applicable.
5.2 Wetlands and Waterways

5.2.1 Water resources

The Rio Grande lies within the eastern boundary of the project area and the active floodplain is largely confined between earthen levees. It is a perennial waterway and construction related impacts are regulated under Sections 404 and 401 of the Clean Water Act (CWA) administered by the US Army Corps of Engineers and the State of New Mexico, respectively.

Eight acequias/drains cross the study corridor. They appear to connect to the river at some point upstream or downstream of the study corridor and are therefore likely regulated. The acequias/drains are owned and maintained by the Middle Rio Grande Conservancy District. The historic acequias are still in use for irrigation and flood control.

Groundwater in the area is found at variable depths, ranging from a few feet to hundreds of feet. Depth to groundwater is affected by a combination of distance from the Rio Grande, local elevation, fault influence on groundwater, and municipal pumping. The groundwater flow direction is generally to the south or southeast, toward or along the long axis of the Rio Grande as it flows south through Bernalillo County.

Potential impacts to water quality as a result of the Bridge Boulevard Reconstruction includes both short (construction-related) and long-term (runoff-related) impacts. Construction activities have the potential to cause minor impacts to these water bodies as a result of runoff/sedimentation from grading nearby areas, filling, or accidental spills of fuel or other chemicals. Other activities associated with impacts to water quality include clearing, culvert installation, borrow pit excavation, etc. During construction activities, a temporary increase of sediments in surface runoff may occur. In addition, increased stream sedimentation may occur during the construction of structures at ditch crossings.

Mitigation of impacts to water resources from construction activities will incorporate BMPs to minimize erosion and reduce sediment deposit in bodies of water within the corridor. Pollution prevention measures would be implemented to prevent pollution from equipment oil, grease, lubricants and fuels on surface waters. Filling and grading activities would be performed in compliance with the NPDES General Permit for Construction Activities. Improvements would be constructed and operated in compliance with all federal and state laws relating to minimization of water quality impacts. Use of vegetative swales for drainage has been shown to reduce pollutant loads in stormwater runoff and will be constructed where appropriate.

5.2.2 Wetlands

Four named ditch crossings are present in Phase 1. These ditches were mostly un-vegetated at the time of the windshield survey (a drive-through survey conducted in March 2015), but could support small wetlands if sufficient flows occur during the
growing season and vegetation is not cleared. A site visit will be performed during the Phase 1 design process to reevaluate potential wetlands. If it is determined that wetlands exist and would be impacted by roadway reconstruction, wetland delineations and associated reporting will be completed.

Two unnamed ditch crossings are present in Phases 2 and 3. These ditches were mostly un-vegetated at the time of the windshield survey, but could support small wetlands if sufficient flows occur during the growing season and vegetation is not cleared. A site visit will be performed during the design processes to reevaluate potential wetlands. If it is determined that wetlands exist and would be impacted by roadway reconstruction, wetland delineations and associated reporting will be completed.

The Rio Grande and two named drains also pass underneath the existing bridge crossing. Wetlands are expected to occur along the river banks and islands present within the vicinity of the existing bridge. The locations of areas likely to support wetlands are identified in Figure 5. Any impacts to these areas would require wetland determinations/delineations and reporting during design of Phase 4. A mitigation plan for loss of wetlands may also be required as part of CWA permitting if the future design results in any impacts; however, it is not anticipated that any work would occur below the Ordinary High Water Mark or in the wetlands area.
5.3 Floodplains

Federal Emergency Management Agency (FEMA) has conducted a flood mapping study for the Albuquerque reach of the Rio Grande. The study details and includes estimated water surface elevations for the 100-year flood event. The project area appears on Flood Insurance Rate Map (FIRM) numbers 35001C0329CG and 35001C0333G. Current FEMA regulations require that any work done to or in a floodplain needs to be assessed to determine if there are negative impacts to the floodplain and mitigate any negative impacts. There are several areas that flood along Bridge Blvd and Tower Road noted within the FIRM Panels. These inundation areas are not connected to the primary Rio Grande floodway and floodplain; there are levees in place to hold back flood waters from the Rio Grande. The inundation areas are associated with low lying areas and ponds on the landside of the levees. Project planning will ensure that construction minimizes impacts to floodplain areas and mitigates where necessary.

5.4 Threatened/Endangered Species and Other Biological Resources

A desktop review and windshield (drive through) survey of the study area was conducted during March of 2015 to identify natural resource issues such as waterways/wetlands, migratory birds, and protected species that should be considered in greater detail during the individual project phases (Appendix C).

5.4.1 Vegetation

The corridor supports a disturbed Plains Mesa Sand Scrub and Riparian Woodland (Dick-Peddie 1993) vegetation community located within an urban area. Improvements to Phase 1 are not expected to result in significant vegetation impacts. With the exception of intersection and drainage enhancements, most construction west of La Vega Drive would occur within currently paved areas. Improvements east of La Vega would impact vegetation to a greater degree if the river and associated bosque (woodlands found along the riparian floodplains of river banks) were impacted, which is not currently known. Vegetation information as observed during the March 2015 windshield surveys is provided below by phase:

Phase 1 is mostly un-vegetated except east of the Coors intersection area, which supports natural scrub vegetation such as four-wing saltbush (*Atriplex canescens*) and prickly pear (*Opuntia sp.*) as well as weedy vegetation such as Russian thistle (*Salsola tragus*) and tree of heaven (*Ailanthus altissima*). Siberian elm (*Ulmus pumila*) is present along the corridor. Siberian elm is a Class C New Mexico noxious weed and tree of heaven is a Class B New Mexico noxious weed. Construction measures to avoid spreading noxious weeds should be implemented.

Phases 2 and 3 are un-vegetated except median ornamental trees and private property landscaping. Some private property landscapes support elm trees and tree of heaven. Ditches in the area support little vegetation although very small wetland
areas could be present if sufficient flows occur during the growing season and vegetation is not cleared.

In **Phase 4**, bosque woodland with riparian wetland vegetation occur along the Rio Grande and ditches. Probable wetlands occur along river/ditch banks and on islands. Sandbars are likely too unstable to support wetlands. Dominant plant species present include cottonwood (*Populus deltoides*), coyote willow (*Salix exigua*), The Class C noxious weeds Siberian elm, Russian olive (*Elaeagnus angustifolia*), saltcedar (*Tamarix chinensis*) are present along the river and ditch systems of the Phase 4 area. An invasive grass thought to be an escaped Asian cultivar (*Miscanthus sp.*) is abundant in wetland areas near the river’s edge. Other New Mexico noxious weeds not evident outside of the growing season may be present and would be detected during a ground survey of the area once plans and environmental documentation for this phase are developed.

5.4.2 Wildlife

Birds observed along the study corridor were white-winged dove (*Zenaida asiatica*), American crow (*Corvus brachyrhynchos*), common raven (*Corvus corax*), and house finch (*Haemorhous mexicanus*). Heron tracks were observed along river bank and occupied cliff swallow (*Petrochelidon pyrrhonota*) nests were present along and underneath the bridge deck over the water.

Mammals were identified by their sign within the Phase 4 area. They were: coyote (*Canis latrans*), raccoon (*Procyon lotor*), unidentified bat (guano and concrete staining), and striped skunk (*Mephitis mephitis*). The bat guano and staining beneath the bridge were sufficient in quantity to indicate that a day roost was present recently. Any impact to the bridge could impact a roosting colony. A slider (turtle) was observed sunning north of the bridge in a stormdrain outfall pond.

General measures recommended to reduce impacts to wildlife for all phases include replanting disturbed areas with certified weed-free native vegetation, and burying any trenching concurrently to reduce trapping of reptiles and small mammals. A biological survey and evaluation will be completed for the Phase 4 environmental evaluation and mitigation measures will be developed to avoid any impacts to wildlife within the bosque or along the Barelas Bridge.

5.4.3 Threatened and Endangered Species

Wildlife

A desktop evaluation of the corridor with respect to the potential for construction to impact plants and wildlife listed by the U.S. Fish and Wildlife Service (USFWS) and the New Mexico Department of Game and Fish (NMDGF) in Bernalillo County was conducted (Table 4).

Phases 1, 2, and 3 are unlikely to result in impacts to federal and state listed species.
The Rio Grande and adjacent levees and associated riparian areas within **Phase 4** support potentially suitable habitat or proposed/designated critical habitat for several listed or otherwise protected species. Species that would need to be addressed further prior to approval for construction are: Rio Grande silvery minnow, Southwestern willow flycatcher, western yellow-billed cuckoo, New Mexico meadow jumping mouse, common black-hawk, and bald eagle.

Migratory Birds

Nesting migratory birds, parts, eggs, and occupied nests are protected from take under the Migratory Bird Treaty Act. Several nests were observed during the study corridor windshield survey and river area reconnaissance.

In **Phase 1**, one nest was observed in a landscape tree in a back yard. No impact to private landscaping along the roadway is expected. However, suitable nest locations are available in intersection and drainage improvement areas and nests may be constructed there during 2015 and future seasons.

In **Phases 2 and 3**, no nests were observed. However, suitable nest locations are available in intersection and drainage improvement areas and nests may be constructed there during 2015 and future seasons.

In **Phase 4**, cliff swallow nests were present both along the sides and underneath decking of the existing bridge in the area over the river. Two stick nests were observed within the bosque south of the bridge in cottonwood trees. The Phase 4 area provides many potential nest sites for protected and migratory bird species. If construction improvements to this area are proposed for Phase 4, recommendations to avoid impacts to migratory species would include the installation of exclusionary netting or another wildlife management agency approved barrier to prevent nest construction.

The general nesting season for the area occurs from approximately March 15 through September 15. It is recommended that construction-related clearing and grading for all phases occur outside of this season. If construction would occur during the nesting season, a preconstruction survey should be completed to ensure avoidance of occupied nests within the construction area. If nests of migratory species would be impacted, a permit must be obtained from the USFWS prior to the onset of the activity.
Table 3. Listed Species with the Potential to Occur in the Project Area

<table>
<thead>
<tr>
<th>Common/Scientific Names</th>
<th>Agency Status in County</th>
<th>Habitat</th>
<th>Suitable Habitat Present/Absent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plants - Not applicable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Invertebrates - Not applicable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fishes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rio Grande silvery minnow (Hybognathus amarus)</td>
<td>USFWS E NMDGF E</td>
<td>Rio Grande from Cochiti Dam to Elephant Butte</td>
<td>Occupied and designated critical habitat present – Phase 3</td>
</tr>
<tr>
<td>Birds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Southwestern willow flycatcher (Empidonax traillii extimus)</td>
<td>USFWS E NMDGF E</td>
<td>Nests in dense willow and cottonwood riparian woodland/wetland habitat</td>
<td>Suitable habitat present – Phase 3</td>
</tr>
<tr>
<td>Western yellow-billed cuckoo (Coccyzus americanus)</td>
<td>USFWS T</td>
<td>Nests in structured riparian tree canopy habitat</td>
<td>Suitable and proposed critical habitat present – Phase 3</td>
</tr>
<tr>
<td>Mexican spotted owl (Strix occidentalis lucida)</td>
<td>USFWS T</td>
<td>Forages in woodlands and forests, nests in old growth conifer habitat</td>
<td>No suitable habitat present</td>
</tr>
<tr>
<td>Northern Aplomado falcon (Falco femoralis septentrionalis)</td>
<td>NMDGF E</td>
<td>Low elevation prairie and grassland</td>
<td>No suitable habitat present</td>
</tr>
<tr>
<td>Baird's sparrow (Ammmodramus bairdii)</td>
<td>USFWS SOC NMDGF T</td>
<td>Migrant in southern NM grasslands</td>
<td>No suitable habitat present</td>
</tr>
<tr>
<td>Gray vireo (Vireo vicinior)</td>
<td>NMDGF T</td>
<td>Pinyon juniper woodlands on slopes</td>
<td>No suitable habitat present</td>
</tr>
<tr>
<td>Sprague's pipit (Anthus spragueii)</td>
<td>USFWS C</td>
<td>Mixed grasslands</td>
<td>No suitable habitat present</td>
</tr>
<tr>
<td>Broad-billed hummingbird (Cynanthus latirostris magicus)</td>
<td>NMDGF T</td>
<td>Nests in arid canyons near waterways</td>
<td>No suitable habitat present</td>
</tr>
<tr>
<td>White-eared hummingbird (Hylocharis leucotis borealis)</td>
<td>NMDGF T</td>
<td>Pine and oak forested canyons</td>
<td>No suitable habitat present</td>
</tr>
<tr>
<td>Peregrine falcons (Falco peregrinus anatum/tundrius)</td>
<td>USFWS SOC NMDGF T</td>
<td>Steep mountain or shore cliffs near water</td>
<td>No suitable habitat present</td>
</tr>
<tr>
<td>Bell's vireo (Vireo bellii)</td>
<td>NMDGF T</td>
<td>Riparian woodland habitat in southern part of the state</td>
<td>Suitable habitat unlikely</td>
</tr>
<tr>
<td>Common black-hawk (Buteogallus anthracinus anthracinus)</td>
<td>NMDGF T</td>
<td>Riparian woodlands, especially cottonwood canopies</td>
<td>Potential suitable habitat present – Phase 3</td>
</tr>
<tr>
<td>Neotropic cormorant (Phalacrocorax brasilianus)</td>
<td>NMDGF T</td>
<td>Breeds in open water habitats</td>
<td>No suitable habitat present</td>
</tr>
<tr>
<td>Common/Scientific Names</td>
<td>Agency Status in County</td>
<td>Habitat</td>
<td>Suitable Habitat Present/Absent</td>
</tr>
<tr>
<td>------------------------</td>
<td>-------------------------</td>
<td>---------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Bald eagle (Haliaeetus leucocephalus alascanus)</td>
<td>BGEPA NMDGF T</td>
<td>Nests along large lakes and rivers, winters in bosque forest along Rio Grande</td>
<td>No suitable nesting habitat present, known to winter in middle Rio Grande – Phase 3</td>
</tr>
<tr>
<td>Brown pelican (Pelecanus occidentalis carolinensis)</td>
<td>NMDGF E</td>
<td>Rare in the state, associated with open water</td>
<td>No suitable habitat present</td>
</tr>
</tbody>
</table>

Mammals

<table>
<thead>
<tr>
<th>Common/Scientific Names</th>
<th>Agency Status in County</th>
<th>Habitat</th>
<th>Suitable Habitat Present/Absent</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Mexico meadow jumping mouse (Zapus hudsonius luteus)</td>
<td>USFWS E NMDGF E</td>
<td>Wet meadows/wetlands near aquatic habitat</td>
<td>Potential suitable habitat present – Phase 3</td>
</tr>
<tr>
<td>Spotted bat (Euderma maculatum)</td>
<td>NMDGF T</td>
<td>Forests, caves, cliffs, rock shelters, bridges, buildings</td>
<td>No suitable habitat present</td>
</tr>
</tbody>
</table>

5.5 Land Use

Land uses along the Bridge Boulevard corridor reflect the agricultural heritage of the area and its legacy as the primary route into the South Valley. Existing land uses make up of a diverse mix of categories from single family residential to agricultural, to commercial and light industrial. Uses vary greatly throughout the corridor.

Phase 1 is largely surrounded by light industrial and contractor yards west of Old Coors Drive and mostly single family residential lots from approximately Old Coors Drive to nearly Goff Boulevard.

Phases 2 and 3 are made up predominantly of a mix of residential and commercial uses, with a higher concentration of restaurants and automotive repair shops. Larger concentrations of commercial uses are generally centered near the major intersections with Goff Boulevard, Sunset Road, and Isleta Boulevard.

Most of Bridge Boulevard contains zoning that was established when the roadway was primarily residential with some neighborhood commercial uses. Consequently, Bridge Boulevard has a disproportionate amount of residential zoning, interspersed with commercial zoning. The corridor as a whole is underutilized. Much of the existing development along the corridor is low density and auto-oriented. Many land uses are characterized by significant setbacks from Bridge Boulevard and large parking lots.

The ROW is constrained in **Phases 3 and 4**. With the widening of Bridge Boulevard in the 1980’s some older structures, largely located near the intersection with Isleta Boulevard, contain minimal setback from the street, with entrances opening onto five foot sidewalks. ROW utilization throughout the corridor reinforces the auto-centric patterns with narrow sidewalks, little buffer from travel lanes for pedestrians, lack of street trees and pedestrian-scale lighting.
Recent planning processes and adopted plans identified the community’s desire for appropriate development in the Bridge Boulevard corridor. In addition to the Bridge Boulevard Corridor Redevelopment Plan, the following sector plans have been reviewed for consistency with the proposed project:

- **Bernalillo County/City of Albuquerque Comprehensive Plan** identified Bridge Boulevard as a boundary between the Established Urban Area and the Semi-Urban Area.

- The **Southwest Area Plan** (2000) included the entire southwest area of Bernalillo County. The plan recommended that detailed studies be conducted for Bridge Boulevard to help identify economic development potential and strategies. It also recognized the need for corridor and Village Center planning to include mixed-use and higher density development to promote walkability and improved transit service.

- **Isleta Boulevard and Village Centers Sector Development Plan** (2008) was prepared to guide appropriate development in semi-rural and urban areas and provide a mixture of suitable uses in a quickly developing area.

- **Bridge Boulevard Village Center and Corridor Plan** (2010) provided guidance to protect and improve characteristics and land use patterns for a portion of Bridge Boulevard, from the east side drain to Goff Avenue. This plan established zoning and design criteria for commercial and residential zoning. It also provided design standards for signage and lighting within the plan area.

The conceptual plans that form the basis of the Preferred Alternative are consistent with the governing sector plans, as well as the City of Albuquerque’s Complete Streets Ordinance.

5.6 Utilities

Water, sewer, electrical, telecommunications cable, and gas utilities are all present within the proposed reconstruction project boundary. These facilities are an important part of the existing infrastructure system in the area and protection from encroachment is critical for continued reliable service in the project area.

Coordination with utility providers, including PNM, Albuquerque Bernalillo County Water Utility Authority, New Mexico Gas Company and telecommunications companies will be conducted in each design phase. The County will also require the construction contractor to notify and coordinate with utility owners regarding the schedule and sequence of construction activities, including utility relocation work.

5.7 Farmland

The U.S. Department of Agriculture, Natural Resource Conservation Service (NRCS), defines prime farmland as those lands whose value is derived from their
general advantage as cropland due to soil and water conditions. According to the NRCS, there are no prime or unique farmlands in or adjacent to the project area.

5.8 Rights Of Way, Land Transfers, and Relocations

The conceptual plans (Appendix A) show possible ROW requirements, which will be determined through the design process. ROW acquisitions are anticipated to be required at major intersections for both intersection configurations proposed for evaluation. Table 4 identifies preliminary calculations of ROW required for each intersection alternative.

Table 4. Preliminary ROW requirements, by alternative

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Parcels Affected</th>
<th>Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunset Road</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roundabout</td>
<td>8</td>
<td>1.30</td>
</tr>
<tr>
<td>Traffic signal</td>
<td>10</td>
<td>1.48</td>
</tr>
<tr>
<td>Isleta Boulevard</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roundabout</td>
<td>9</td>
<td>0.97</td>
</tr>
<tr>
<td>Traffic signal</td>
<td>9</td>
<td>0.97</td>
</tr>
</tbody>
</table>

Property acquisition and relocations are governed by the Uniform Relocation Assistance and Real Property Acquisition Act of 1970. This law provides for the fair, consistent, and equitable treatment of persons and businesses affected by federal actions requiring acquisition and relocations. Any acquisitions or relocations would comply with this law.

5.9 Social and Economic Impacts

5.9.1 Environmental Justice

In compliance with the Executive Order (EO) 12898, Environmental Justice, and Title VI of the Civil Rights Act of 1964, it is FHWA policy to avoid disproportionately high and adverse impacts on low-income or minority population groups. For the purposes of assessing potential environmental justice issues within the study area, 2010 U.S. Census data for census tracts 14, 23, 24.02, 43, 44.01, and 47.40 were examined and compared to data for all of Bernalillo County and the State of New Mexico.

Data show that approximately 21.9% of individuals in the Bridge Boulevard Corridor area were below 2012 poverty level guidelines, compared to 14.1% of individuals in Bernalillo County and 15.6% of individuals in New Mexico (Table 5). Owner-occupied housing rates are not significantly different in the project area from Bernalillo County or the state.
Table 5. Income Characteristics in Project Area

<table>
<thead>
<tr>
<th></th>
<th>State of New Mexico</th>
<th>Bernalillo County</th>
<th>Project Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>2,059,179</td>
<td>662,564</td>
<td>35,859</td>
</tr>
<tr>
<td>Housing Units</td>
<td>901,388</td>
<td>284,234</td>
<td>13,078</td>
</tr>
<tr>
<td>Owner Occupied Units (%)</td>
<td>68.5</td>
<td>63.2</td>
<td>64.7</td>
</tr>
<tr>
<td>Median Household Income ($)</td>
<td>44,927</td>
<td>48,801</td>
<td>36,037</td>
</tr>
<tr>
<td>Families Below Poverty Level (%)</td>
<td>15.6</td>
<td>14.1</td>
<td>21.9</td>
</tr>
</tbody>
</table>

Source: American Community Survey, 2013

The majority of residents in the Bridge Boulevard Corridor are Hispanic or Latino (83.6%), compared to 47.9% of individuals in Bernalillo County and 46.3% of individuals in the state of New Mexico (Table 7).

Minority representation in the study area exceeds the 50 percent minority threshold identified by the federal Council on Environmental Quality and one census tract (14) in the study area has a low-income population exceeding 25 percent. Therefore, the entire study area is considered a potential environmental justice area.

Table 6. Race in Project Area

<table>
<thead>
<tr>
<th></th>
<th>State of New Mexico</th>
<th>Bernalillo County</th>
<th>Project Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Hispanic or Latino (%)</td>
<td>53.7</td>
<td>52.1</td>
<td>16.4</td>
</tr>
<tr>
<td>Hispanic or Latino %</td>
<td>46.3</td>
<td>47.9</td>
<td>83.6</td>
</tr>
</tbody>
</table>

Source, U.S. Census Bureau, 2010

EO 12898 requires federal agencies to work to ensure greater public participation in the decision-making process. In addition, CEQ guidance suggests that federal agencies should acknowledge and seek to overcome linguistic, cultural, institutional, geographic, and other barriers to meaningful participation. Efforts to include all populations in the planning process included a distribution of a residential survey in both English and Spanish with in-person interviews of random respondents by bilingual staffers, distribution and advertisement of bilingual meeting notices, attendance at neighborhood meetings, and conducting meetings at centrally-located community centers. A focus group was also held for Spanish-speaking residents and business owners. For the design phases, these efforts will continue. Newsletters and meeting notices will be bilingual and a translator will be available at each public meeting. In addition, open houses will be held at different times during the day to accommodate those who are unable to attend evening meetings or who rely on daytime public transit.
The Preferred Alternative would be constructed within existing ROW, with the exception of three major intersections. Limited business displacements are likely at intersections; however, all displacements will comply with the Uniform Relocation Assistance and Real Property Acquisition Act of 1970 to minimize impact to the affected businesses. The project will not produce disproportionate impacts because the project will increase mobility and safety for all populations in the area. The project will be consistent with Title VI of the Civil Rights Act and the federal environmental justice policy.

5.9.2 Communities and Neighborhoods

There are eleven neighborhood associations in the immediate study area and most also participate in larger associations such as the Southwest Alliance of Neighborhoods and South Valley Coalition. Neighborhood associations in the area include:

- Alamosa
- Vecinos del Bosque
- Yakima
- Wildwood Lane
- Armijo
- Atrisco
- Stinson Tower
- Conita Real
- Poplar Lane
- Los Altos Civic
- Tapia Meadows
- Barelas

The cultural identity and historic importance of the area is a strong element of community pride. Many families have lived in these neighborhoods for generations and there is an emphasis on maintaining the history and culture of the neighborhoods, improving facilities, and providing an environmentally safe area to live, work, and play. The importance of community identity and cohesion has been a common discussion with stakeholders during the previous planning processes. This emphasis is understood and will be considered during all design phases.
Pedestrian connectivity between neighborhoods, commercial areas, and surrounding neighborhoods and schools is limited, particularly for east-west movement. Schools near the project area include Valle Vista Elementary School, Alamosa Elementary School, Atrisco Elementary School, and Armijo Elementary School. There is also a School on Wheels Alternative Study School on the Corridor at Hartline. This school provides a high school education and marketable job skills to students between the ages of 16 and 18.

Recreational opportunities exist along the corridor include Bernalillo County’s Gateway Park, the Rio Grande Valley State Park within the nearby Bosque along the Rio Grande river, and paths along the acequias. Community events and weekly growers markets are held at the Gateway Park. The National Hispanic Cultural Center is also located at the east end of the project area. In addition to the museum, it hosts a number of cultural events throughout the year.

There are three community centers in the area, but not on the corridor itself. The South Valley Multi-Purpose Senior Center, located just north of the project area off of Atrisco Drive, promotes and educates the community about the history of the area. A new 3,250 square foot building addition is currently in design. The Westside Community Center, located on Isleta Boulevard south of the project area, provides fitness facilities and after-school programs. The Alamosa Community Center, to the west of the project area, provides a health and social service center, a child and family development services program and a public library. The Alamosa Center has a gymnasium, outdoor basketball courts, arts and crafts room, fitness center and an outdoor amphitheater/performance space.

Infrastructure and design of the built environment can affect health behaviors and environmental exposure within a community. The design of the built environment can offer opportunities for residents to engage in healthy behaviors such as active transportation that reduce some chronic illnesses such as diabetes, asthma, cardiovascular disease, and obesity. Generally, the Bridge Boulevard Corridor and surrounding areas have a higher rate of premature deaths from chronic diseases than the rest of Bernalillo County (Place Matters 2005). The project will include improvements to pedestrian facilities to comply with ADA guidelines and bicycle
lanes that connect within surrounding trails and bike paths to encourage active modes of transportation within the community.

Roadway designs will include pedestrian and bicycle facilities to promote safe, active transportation and improve connectivity between neighborhoods, recreational facilities, and schools.

5.9.3 Economic Profile

Traffic counts collected in 2011 using Bluetooth readers indicate that most traffic in the Bridge Boulevard corridor is through traffic, with destinations off the corridor. There are areas of commercial activity, mostly east of Atrisco Boulevard. With redevelopment efforts underway, including participation in the New Mexico Main Street Program, the area is expected to experience growth and development.

A reconstructed roadway with multi-modal connectivity would result in an improved transportation system that provides access to activity centers throughout the corridor. There are positive impacts to economic resources such as increased employment during construction. In the long-term, beneficial impacts are expected as a result of a safer and improved transportation system for the corridor. Enhanced multi-modal facilities are expected to support economic redevelopment within the corridor.

5.10 Noise

Existing noise levels in the project area are typical of urban and semi-rural environments. Ambient noise levels are primarily defined by local and commercial road traffic. Reconstruction of Bridge Boulevard is not expected to induce traffic demand. Some increase in ambient noise levels are expected from construction-related activities; however noise levels would remain far below state and federal standards for public safety and would not persist beyond completion of the planned construction work. Noise analysis will be completed during Phase 1 for the Tower Road alignment.

5.11 Air Quality

The Clean Air Act of 1970, as amended, establishes National Ambient Air Quality Standards (NAAQS) to protect the public health from exposure to dangerous levels of six air pollutants (ozone, airborne particulates, carbon monoxide, sulfur dioxide, nitrogen dioxide, and lead) (EPA 2010). Bernalillo County is in attainment for all NAAQS.

Albuquerque is a limited maintenance area for carbon monoxide and has not exceeded any state or federal standards since 1991. And none of the intersections are among the top congested intersections for the region. Recent year background concentrations of carbon monoxide (8-hour) are less than 2 ppm at monitoring stations operated by the City of Albuquerque. Because the project is not expected to induce travel demand, adverse impacts to air quality are not anticipated as a
5.12 Historic Preservation

Van Citters: Historic Preservation LLC performed a Historic Resource Characterization of the Bridge Boulevard Corridor in March and April, 2012 and an update to include Bridge Boulevard between the Barelas Bridge and 8th Street in March 2015 (Appendix D). The characterization of the historic resources found within the study area entailed a Class I file search for archaeological resources previously surveyed and a windshield survey of the neighborhoods and adjacent commercial, industrial, and agricultural areas within the project boundaries. Secondary sources were used for the development of a brief historic context for the buildings and landscapes.

The project area is within the boundaries of the original 1692 Atrisco land grant, a relatively intact Spanish colonial grant that is one of the few that has been continuously owned by the original settlers and their heirs. Because of the longevity of the land grant, the project area has over 300 years of Hispanic heritage. The project area has had many land uses during this time, including residential uses, agricultural lands, free grazing common areas, and commercial development. A search of the New Mexico Cultural Resource Information System was completed and there were no documented archaeological resources along the Corridor.

Historic properties along the Bridge Boulevard Corridor include or may include:

- The portion of Bridge Boulevard that was a part of the Camino Real Tierra de Adentro (National Historic Trail Camino Real National Scenic Byway) and historic Route 66 (Route 66 National Scenic Byway)
- Acequias that are a part of the Middle Rio Grande Conservancy District (MRGCD) historic district: Arenal Main Canal, the Ranchos de Atrisco Acequia, Arenal Acequia, the Atrisco Acequia, the Atrisco Riverside Drain, the Isleta Drain, and the Albuquerque Riverside Drain
- Resources to be evaluated for National Register of Historic Places eligibility once proposed project alternatives are defined include:
 - Vernacular buildings and resources identified in Appendix D:
 - 1996 Auto-Oriented Commercial Development historic context
 - Five Points School (School on Wheels)
 - Agricultural fields

Although there have been numerous archaeological surveys along or crossing the Bridge Boulevard Corridor, none have found any resources. For each design phase, properties that are 42 years old or older and are located within a 100-foot buffer outside each side of ROW will be recorded on Historic Cultural Property Inventory forms. There are 55 properties to be evaluated in Phase 1, 65 properties to be
evaluated in **Phase 2**, 13 properties to be evaluated in **Phase 3**, and 7 properties to be evaluated in **Phase 4**.

Examples of actions that could result in impacts to historic properties include changes to alignment and appurtenances, takings, and vibrations from construction.

5.13 Section 4(f)

Section 4(f) of the Department of Transportation Act of 1966 restricts the use of public parks, recreational areas, wildlife refuges or significant historic sites for transportation projects. Section 4(f) properties in the Corridor include or may include:

- Bridge Boulevard itself, as a part of the Camino Real de Tierra Adentro and Route 66
- Six acequias that are a part of the MRGCD Historic District
- Gateway Park at Bridge and Isleta Boulevard
- Five Points School (School on Wheels) at Bridge and Hartline
- Rio Grande Valley State Park and Paseo del Bosque Trail

It is not anticipated that there will be any use of Section 4(f) properties; however, Section 4(f) issues will require further investigation during environmental re-evaluations including consultation with property owners to determine eligibility and proper action. The final decision on applicability of Section 4(f) to the referenced properties is made by FHWA. This action, as well as development of avoidance alternatives, if appropriate, can take place during the respective environmental re-evaluation document process.

5.14 6(f) Properties

Federal law also restricts the use of lands acquired with funding authorized under Section 6(f) of the Land and Water Conservation Fund Act of 1965. There are no known Section 6(f) properties on or adjacent to Bridge Boulevard.

5.15 Visual Resources

Visual resources refer to all objects (manmade and natural, moving and stationary) and features (e.g., land forms and water bodies) that are visible on a landscape. These resources add to or detract from the scenic quality of the landscape, that is, the visual appeal of the landscape. A visual impact is the creation of an intrusion or perceptible contrast that affects the scenic quality of a landscape. A visual impact can be perceived by an individual or group as either positive or negative, depending on a variety of factors or conditions (e.g., personal experience, time of day, and weather/seasonal conditions).
The visual resource evaluation area includes the Bridge Boulevard ROW, existing land uses, and surrounding visible landscapes. Representative land uses along the Bridge Boulevard ROW include commercial uses, including automotive repair shops and retail, residential, light industrial and contractor yards, agricultural fields, and vacant lots. Aesthetics along the corridor is an important issue, as a significant number of comments were received about this topic during the Redevelopment Plan process.

Visual assets beyond the corridor include natural landscapes. To the east, the Sandia and Manzano Ranges extend in a generally north-south direction and consist of uplifted, fault-block mountains. These mountain ranges are the most distinct elements to the east of the region and dominate the eastern horizon. Immediately to the east of the project area the Rio Grande river valley and bosque is set against views of downtown Albuquerque with the Sandia Mountains in the background. West of the project area is the mesa escarpment. From the east end of the project area, volcanoes to the west of Albuquerque are visible, as is the mesa escarpment.

The proposed reconstruction is not expected to significantly change visual resources in the area, aside from adding landscaped medians within the corridor. New street lighting will comply with the New Mexico Night Sky Protection Act.

5.16 Hazardous Waste Information

HDR Engineering, Inc. (HDR) conducted an Initial Site Assessment (ISA) (also known as a Phase I Environmental Site Assessment, or ESA) for the approximately 3.54 mile section of Bridge Boulevard (and a short section of Tower Road) (Appendix E). The purpose of the ISA was to document potential hazardous materials issues within the project corridor and the immediate surrounding area. The ISA will help to establish existing conditions as a baseline of information, and to identify the possible location of suspected hazardous materials that have the potential to be released into the subsurface. If these hazardous materials are present in concentrations above regulatory action levels, and are encountered during construction, they may pose health risks to workers and/or disposal liabilities for the project owner.

A database search for potential hazardous waste sites and underground storage tanks within the corridor was completed by Environmental Data Resources, Inc.,
Environmental Assessment
October 2015

(EOD). Federal, state, local, and tribal environmental records were reviewed for the project corridor to determine the presence of areas of concern within the project corridor. In addition, Sanborn Fire Insurance maps, historical aerial photographs, and historical city directories were reviewed for the project corridor. According to HDR’s review of historical data sources, the Project Corridor has been developed for commercial and residential uses since at least the 1930s, with newer development in the western end of the corridor.

The search identifies recognized environmental conditions, meaning the presence or likely presence of any hazardous substance or petroleum product on the property indicating an existing or past release into structures, the ground water and/or soil. Hazardous waste sites which may have recognized environmental conditions would be, but are not limited to, service stations, industrial facilities, landfills and mining sites. Once potentially contaminated sites have been identified, the design may be modified to avoid such sites. Other measures are also available to minimize impact of these sites on to the project.

Twenty-four potential sites with contamination issues were identified in the project corridor. Each of these sites has the potential to impact the project through the presence of residual contaminants in soil and/or groundwater. The 24 potential sites are located within the phase segments as follows: Phase 1 – 7 sites; Phase 2 – 7 sites; Phase 3 – 5 sites; and Phase 4 - 5 sites. These sites are summarized as Recognized Environmental Concerns (RECs) in Table 8.

Table 7. Recognized Environmental Concerns

<table>
<thead>
<tr>
<th>Project Phase</th>
<th>Site Name</th>
<th>Address</th>
<th>Site Operations Relative to Hazmat Issues, Regulatory Listing(1)</th>
<th>Data Source (2)</th>
<th>Risk Ranking L/M/I/H (3)</th>
<th>Phase II Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seg 1 / A</td>
<td>Valero CSS</td>
<td>1100 Old Coors Rd SW</td>
<td>UST – active site</td>
<td>R, H, D</td>
<td>H</td>
<td>Yes</td>
</tr>
<tr>
<td>Seg 1 / B</td>
<td>Economy Oil HSS</td>
<td>2301 Bridge Blvd SW</td>
<td>Historic service station 1950s-??</td>
<td>H</td>
<td>I</td>
<td>Yes</td>
</tr>
<tr>
<td>Seg 1 / C</td>
<td>Mark’s / Eveready HSS</td>
<td>2226 Bridge Blvd SW</td>
<td>Historic service station pre-1970</td>
<td>R, H</td>
<td>I</td>
<td>Yes</td>
</tr>
<tr>
<td>Seg 1 / D</td>
<td>Victor’s FSS</td>
<td>2115 Bridge Blvd SW</td>
<td>Former service station pre-1970</td>
<td>R, H</td>
<td>I</td>
<td>Yes</td>
</tr>
<tr>
<td>Seg 1 / E</td>
<td>Plaza Cleaners</td>
<td>1720 Bridge Blvd SW</td>
<td>Dry cleaners, early 1960s-early 2000s</td>
<td>R, H, D</td>
<td>I</td>
<td>Yes</td>
</tr>
<tr>
<td>Seg 1 / F</td>
<td>McGathlin / Standard / Deep Rock HSS</td>
<td>1701 Bridge Blvd SW</td>
<td>Historic service station, 1950s – 1980s</td>
<td>H</td>
<td>H</td>
<td>Yes</td>
</tr>
<tr>
<td>Project Phase</td>
<td>Site Name</td>
<td>Address</td>
<td>Site Operations Relative to Hazmat Issues, Regulatory Listing(^1)</td>
<td>Data Source (^2)</td>
<td>Risk Ranking L/M/I/H (^3)</td>
<td>Phase II Recommendation</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------</td>
<td>--------------------------</td>
<td>--</td>
<td>-------------------</td>
<td>------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Seg 1 / G</td>
<td>Enco / Exxon / Roman’s</td>
<td>1700 Bridge Blvd SW</td>
<td>Former service station, early 1960s – late 1990s</td>
<td>R, H, D</td>
<td>H</td>
<td>Yes</td>
</tr>
<tr>
<td>Seg 2 / H</td>
<td>Taylor’s HSS</td>
<td>1664 Bridge Blvd SW</td>
<td>Historic service station, late 1940s – early 1970s</td>
<td>H</td>
<td>H</td>
<td>Yes</td>
</tr>
<tr>
<td>Seg 2 / J</td>
<td>Claude’s HSS</td>
<td>1595 Bridge Blvd SW</td>
<td>Historic service station, early 1960s – early 1970s</td>
<td>H</td>
<td>H</td>
<td>Yes</td>
</tr>
<tr>
<td>Seg 2 / K</td>
<td>Southwest / Price Transmission FSS</td>
<td>1573 Bridge Blvd SW</td>
<td>Historic service station, early 1950s – early 1980s, Price from 1980s</td>
<td>R, H, D</td>
<td>H</td>
<td>Yes</td>
</tr>
<tr>
<td>Seg 2 / L</td>
<td>Clancy’s Five Points HSS</td>
<td>1501 Bridge Blvd SW</td>
<td>Historic service station, late 1950s – early 1980s</td>
<td>H</td>
<td>H</td>
<td>Yes</td>
</tr>
<tr>
<td>Seg 2 / M</td>
<td>Vanity Cleaners</td>
<td>1500 Bridge Blvd SW</td>
<td>Dry cleaners, late 1960s - current</td>
<td>R, H, D</td>
<td>I</td>
<td>Yes</td>
</tr>
<tr>
<td>Seg 2 / P</td>
<td>Johnny’s Body Shop</td>
<td>1205 Bridge Blvd SW</td>
<td>Auto body and repair shop with paint booth</td>
<td>R, H, D</td>
<td>I</td>
<td>Yes</td>
</tr>
<tr>
<td>Seg 3 / Q</td>
<td>Farmer’s Oil HSS</td>
<td>1101 Bridge Blvd SW</td>
<td>Historic service station, early 1950s – early 1970s</td>
<td>H</td>
<td>H</td>
<td>Yes</td>
</tr>
<tr>
<td>Seg 3 / R</td>
<td>Gasamat FSS</td>
<td>915 Bridge Blvd SW</td>
<td>Former service station, late 1960s - 2000</td>
<td>R, H, D</td>
<td>H</td>
<td>Yes</td>
</tr>
<tr>
<td>Seg 3 / S</td>
<td>Bentley / Chevron / Fina HSS</td>
<td>829 Bridge Blvd SW</td>
<td>Historic service station, early 1950s – mid 1980s</td>
<td>H</td>
<td>H</td>
<td>Yes</td>
</tr>
<tr>
<td>Seg 3 / T</td>
<td>Bridge St. Cleaners</td>
<td>810 Bridge Blvd SW</td>
<td>Dry Cleaners, early 1960s – early 1980s</td>
<td>H</td>
<td>I</td>
<td>Yes</td>
</tr>
<tr>
<td>Seg 3 / U</td>
<td>Pump & Save / Fina / Pargin CSS</td>
<td>800 Bridge Blvd SW</td>
<td>Current service station, late 1970s - current</td>
<td>R, H, D</td>
<td>H</td>
<td>Yes</td>
</tr>
<tr>
<td>Project Phase</td>
<td>Site Name</td>
<td>Address</td>
<td>Site Operations Relative to Hazmat Issues, Regulatory Listing (1)</td>
<td>Data Source (2)</td>
<td>Risk Ranking L/M/I/H (3)</td>
<td>Phase II Recommendation</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------------------</td>
<td>---------------</td>
<td>--</td>
<td>----------------</td>
<td>-------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Seg 4 / V</td>
<td>Former Circle K #734 FSS</td>
<td>100 La Vega SW</td>
<td>Former service station, late 1970s – early 2000s</td>
<td>R, H, D</td>
<td>H</td>
<td>Yes</td>
</tr>
<tr>
<td>Seg 4 / W</td>
<td>Rankin’s Conoco HSS</td>
<td>712 Bridge Blvd SW</td>
<td>Historic service station, late 1950s – early 1970s</td>
<td>H</td>
<td>H</td>
<td>Yes</td>
</tr>
<tr>
<td>Seg 4 / X</td>
<td>Hedges Oil / PDQ HSS</td>
<td>529 Bridge Blvd SW</td>
<td>Historic services station, early 1950s – early 1970s</td>
<td>H</td>
<td>H</td>
<td>Yes</td>
</tr>
<tr>
<td>Seg 4 / Z</td>
<td>DeLuxe HSS</td>
<td>508 Bridge Blvd SW</td>
<td>Historic service station, late 1940s – early 1980s</td>
<td>H</td>
<td>H</td>
<td>Yes</td>
</tr>
</tbody>
</table>

(1) Complete list of acronyms identified in EDR report in Appendix A
(2) Indicates primary information sources for listing: R=Reconnaissance, I=Interview, D=Database, H=Historical Source (Sanborns, historical aerial photographs, historical topographic maps)
(3) Risk of potential impacts onsite; Low /Moderate/Indeterminate/High

Based upon the identified RECs for the Project Corridor, HDR recommends the following:

Recommendation 1

HDR recommends that the client conduct Phase II site investigations for each site listed in Table 8 to determine location and severity of suspected impacts from the identified risk sites. The Phase II work should include drilling, sample collection for geologic parameters and laboratory analysis of soils, sample collection and laboratory analysis of groundwater samples (in areas where groundwater will be disturbed by the project), and a report of findings relative to regulatory action levels for the contaminants of concern. The Phase II work should be conducted in accordance with state and federal requirements regarding qualifications of staff, laboratory methods employed, and soil boring / monitoring well abandonment protocols adjudicated by the State.

Recommendation 2

HDR recommends that all construction contractors shall be instructed to immediately stop all subsurface activities in the event that potentially hazardous materials are encountered, an odor is identified, or significantly stained soil is visible. Contractors
shall be instructed to follow all applicable regulations regarding discovery and response for hazardous materials encountered during the construction process.

Recommendation 3

HDR recommends that the client consider the “shelf life” of Phase I documents in determining risk. ASTM E 1527-13: 4.6 states that a conforming “Phase I” report is valid for a period of 180 days, and may be updated during the 180 days to a 1-year timeframe. The report is valid for use in any of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) defenses ONLY if it is updated within this time frame. If greater than one year passes from the final report date, the Phase I effort would need to be repeated to remain in compliance with ASTM and the “All Appropriate Inquiry” (AAI) protection.

5.17 Construction Activities

The majority of construction activities would take place within the existing ROW, although some temporary construction easements may be required for utility relocations. Any activity to occur outside of ROW will be on segments of acquired parcels at major intersections.

To minimize disruption to businesses, residents, and the traveling public, detailed traffic control plans will be prepared. BCPWD and the contractor will communicate regularly with area businesses and residents to coordinate construction activities and maintain reasonable access. Any lane closures will be communicated to police, fire, and rescue departments to ensure that there are no interruptions to public safety services. BCPWD will issue regular media releases to inform the public about construction activities, lane closures, detours, and alternate routes. BCPWD will work with businesses to display access signage.

5.18 Indirect Impacts

Indirect impacts are project effects that occur later in time or away from the immediate project area. One of the needs of the project is to design a safe, accessible, and attractive roadway that serves multiple modes of transportation and supports livability principles. As such, the Preferred Alternative may induce changes in economic vitality by creating an accessible, inviting corridor ripe for redevelopment efforts for both businesses and housing. Mixed-use development allowed by new corridor zoning has been shown to reduce trip generation. In addition, neighborhood character would be enhanced by improving connectivity and community cohesion. The No-Build alternative would have negative indirect impacts, as mobility would continue to decrease as traffic volumes increase.

5.19 Cumulative Impacts

Cumulative impacts result from the incremental impact of an action when added to other past, present, and reasonably foreseeable future actions regardless of what agency or person undertakes such other actions.
ABQ Ride has recently installed five bus shelters along Bridge Boulevard. The ADA-accessible bus shelters are solar-powered and include a bench, route information, and trash receptacle. The reconstruction of Bridge Boulevard, including reconstructed sidewalks and crosswalks, will enhance accessibility to these bus shelters to positively impact the community’s choice in modes of transportation. The increase in traffic, whether build or no build, may decrease air quality; however, air quality standards will continue to be met. The preferred alternative is designed to move traffic more efficiently and minimize air quality impacts.

Currently under construction, the Goff Boulevard project includes roadway improvements between Bridge Boulevard and the Isleta/Arenal/Goff intersection and storm drainage improvements between Bridge Boulevard and the Sanchez Farm Pond. Goff Boulevard will be widened from two to three lanes and curb and sidewalk will be added to the roadway. Storm drain improvements are also planned. Designs for Bridge Boulevard will tie into these improvements to ensure improved connectivity and safety.

The South Valley MainStreet Program is an economic development program that assists the South Valley community in revitalizing their traditional neighborhood. They support local businesses and host a variety of cultural events. The program is currently hosting community listening sessions to explore the identity of the South Valley and aid in the development of the “entrada” to Bridge Boulevard and the South Valley. Public input will help to define the appearance of the corridor, including art, facades, and landscaping. The design teams will coordinate with the Main Street Board to embrace the desired aesthetic components of the roadway and fit within the context of the community.

A number of roadway projects are planned within the South Valley, near the project corridor. BCPWD proposes to reconstruct Sunset Road south of Bridge Boulevard to include safety improvements such as sidewalks and signage. BCPWD is planning to improve the Isleta Drain Trail to extend from Bridge Boulevard to Alameda Boulevard. The City of Albuquerque proposes bridge reconstruction over Williams Street, just east of the project area. NMDOT proposes to reconstruct the Avenida Cesar Chavez (Bridge Boulevard) interchange with I-25. Construction impacts could cause high volumes of traffic to back up to the Bridge Boulevard project area. Construction timing would be considered during the construction of Phases 2, 3, and 4 to avoid cumulative construction impacts.

The population of the South Valley and the southwest is forecasted to continue to grow. Potential housing development such as the Santolina developments would add an additional 38,000 homes and likely, additional pass-through traffic on Bridge Boulevard. Without adding capacity on Bridge Boulevard, the roadway would be highly congested; however, reconstruction of the road with consideration for intersection configurations could help maintain traffic levels.

No significant adverse cumulative impacts are anticipated from the Preferred Alternative.
5.20 Irreversible and Irretrievable Commitment of Resources

Project implementation would involve the commitment of resources. Right-of-way acquired for the extension would preclude future uses. Fossil fuels, labor, and materials would be expended. These are not retrievable but are also not rare. Construction would require a one-time expenditure of non-retrievable public funds. Resources would be committed based on the assumption that corridor users and the community would benefit from the project. Maintenance of traffic flow and economic redevelopment within the project corridor would be expected to justify this commitment.
6 Agency Coordination and Public Involvement

6.1 Solicitation Letters

During the Redevelopment Plan process, information regarding the conceptual roadway plans and zoning were sent to the City of Albuquerque, Bernalillo County, Albuquerque Public Schools, Albuquerque Metropolitan Arroyo Flood Control Authority, Public Service Company of New Mexico, and MRCOG for comments. Comments received were incorporated into the Redevelopment Plan and Preferred Alternative.

Letters describing the proposed project and soliciting comments were sent to additional state and federal agencies on April 13, 2015. The solicitation letter described the proposed improvements to Bridge Boulevard. A total of six responses were received, and a copy of each letter is provided in Appendix F.

6.2 Public Involvement

As a community that cherishes its rich history and wants to preserve the legacy it leaves for future generations, it is critical to integrate the public into the project development process. The public involvement program for the Redevelopment Plan was extensive, with four public meetings, a design charrette, twelve steering committee meetings, and presentations to neighborhood associations. In addition, a presentation was made to the Town of Atrisco-Merced and an elected officials briefing was conducted.

Building upon the public input received during the Redevelopment Plan process, the action proposed in this EA was developed and coordinated with input from federal, state, and local agencies, and the general public.

Stakeholders for this project include:

- Business and property owners along Bridge Boulevard
The project team is continuing to invite involvement from a broad range of groups within the community throughout the development of this EA and for future design efforts. As the roadway designs are developed further, issues of potential importance to these groups will be given full consideration in the development of the preferred alternative, the identification and evaluation of critical issues, and the development of measures to mitigate substantive and adverse impacts.

In addition to traditional public involvement meetings, the methods used to coordinate with stakeholder agencies and to obtain input from the public include written and e-mail correspondence, presentations at neighborhood association meetings, day time informal open houses in local venues, and mobile information kiosks in high traffic locations.

A summary of agency and public coordination efforts is provided in a Public Involvement and Community Outreach Summary Report.

6.2.1 Key Issues and Concerns

Key issues and concerns that have been identified by members of the public include:

- Respecting the character of the South Valley - celebrate the agricultural tradition, open space, and acequias
- Maintaining authenticity
- Aesthetics
- Balance traffic between commuting needs and retail needs
- Roundabouts
- Right-of-Way requirements
- Access from Five Points to Bridge Boulevard
- Tower alignment and access to and from Bridge Boulevard west of Old Coors Road
- Access to businesses
- Construction impacts

Following the circulation of the EA, a public hearing will be held. The purpose of the hearing will be to provide a formal opportunity for the public to respond to the contents of the EA. Written comments will be solicited as part of the project record, and a court reporter will be made available for recording verbal comments.

Following the public hearing and public comment period, an input synopsis will be prepared. The input synopsis will include a summary of the project need and
alternatives, a summary of the public hearing and public information activities, copies of handouts, written comments, and responses to comments.

7 Environmental Commitments

- Because one acre or more of land will be disturbed, a NPDES permit shall be required, including a SWPPP.

- BMPs shall be installed and maintained both during and after construction to prevent, to the extent practicable, pollutants in storm water runoff from entering waters of the U.S. The SWPPP shall outline erosion control measures such as stabilization practices, storm water management measures, structural controls, and BMPs to mitigate soil erosion. Disturbed areas would be re-vegetated after construction, if applicable.

- Measures shall be implemented to ensure that hazardous materials such as fuel are not stored within or adjacent to arroyos, or that equipment working in arroyos be free of fuel or hydraulic leaks. Additionally vehicles shall be refueled in designated areas that are at least 100 feet from waterways.

- Section 404 and 401 permitting, pursuant to the CWA may be required with any work associated with Phase 4.

- Further coordination with the USACE may be required during each design phase if it is determined there will be any dredge or fill in acequia or ditch crossings.

- A site visit shall be performed during the design process for each phase to re-evaluate potential wetlands at acequias and ditch crossings.

- Project planning will ensure that construction minimizes impacts to floodplain areas and mitigates where necessary.

- Construction measures to avoid spreading noxious weeds will be implemented.

- A biological survey and evaluation will be completed for the Phase 4 environmental evaluation and mitigation measures will be developed to avoid any impacts to wildlife within the bosque or along the Barelas Bridge.

- It is recommended that construction-related clearing and grading for all phases occur outside of wildlife nesting season. If construction would occur during the nesting season, a preconstruction survey should be completed to ensure avoidance of occupied nests within the construction area.

- In Phase 4, exclusionary netting or another wildlife management agency approved barrier will be installed to prevent nest construction within the project construction site.

- If nests of migratory species would be impacted, a permit must be obtained from the USFWS prior to the onset of the activity.
• Coordination with utility providers, including PNM, Albuquerque Bernalillo County Water Utility Authority, New Mexico Gas Company and telecommunications companies will be conducted in each design phase. BCPWD will also require the construction contractor to notify and coordinate with utility owners regarding the schedule and sequence of construction activities, including utility relocation work.

• Contractors for each phase of the project will be required to obtain all applicable air quality permits.

• In compliance with Section 106 of NHPA, HCPI forms will be prepared and consultation with SHPO will occur with regards to historic properties along Bridge Boulevard in order to make decisions regarding mitigation efforts as each phase of construction is developed.

• HDR recommends that the client conduct Phase II site investigations for each site to determine location and severity of suspected impacts from the identified risk sites. The Phase II work should include drilling, sample collection for geologic parameters and laboratory analysis of soils, sample collection and laboratory analysis of groundwater samples (in areas where groundwater will be disturbed by the project), and a report of findings relative to regulatory action levels for the contaminants of concern. The Phase II work should be conducted in accordance with state and federal requirements regarding qualifications of staff, laboratory methods employed, and soil boring / monitoring well abandonment protocols adjudicated by the State.

• All construction contractors shall be instructed to immediately stop all subsurface activities in the event that potentially hazardous materials are encountered, an odor is identified, or significantly stained soil is visible. Contractors shall be instructed to follow all applicable regulations regarding discovery and response for hazardous materials encountered during the construction process.

• HDR recommends that the client consider the “shelf life” of Phase I documents in determining risk. ASTM E 1527-13: 4.6 states that a conforming “Phase I” report is valid for a period of 180 days, and may be updated during the 180 days to 1-year timeframe.

• New street lighting shall be compliant with the New Mexico Night Sky Protection Act.

8 Conclusion

After reviewing the potential impacts identified within the project corridor, considering the context and setting of the preferred alternative and the fact that most improvements will take place within an existing, urbanized footprint, and avoidance and mitigation opportunities are available for future environmental analysis, no significant impacts are noted. All impacts can and will be mitigated. This EA would
not authorize any construction activities. Consultation with FHWA and NMDOT will determine the appropriate level of environmental re-evaluation. In addition to on-going public outreach, the following environmental issues have been identified for detailed analysis, by phase:

Phase 1:
- Historic Properties HCPI forms
- Site visit to evaluate vegetation on banks of acequias; wetland delineation if wetlands present and would be affected by design.
- Hazardous Materials Phase II Site Investigation
- Noise analysis

Phase 2:
- Historic Properties HCPI forms
- Site visit to evaluate vegetation on banks of acequias; wetland delineation if wetlands present and would be affected by design.
- Hazardous Materials Phase II Site Investigation

Phase 3:
- Historic Properties HCPI forms
- Section 4(f) evaluation
- Site visit to evaluate vegetation on banks of acequia; wetland delineation if wetlands present and would be affected by design.
- Hazardous Materials Phase II Site Investigation

Phase 4:
- Historic Properties HCPI forms
- Section 4(f) evaluation
- Biological Assessment
- Wetland delineation and Section 404/401 of the CWA permitting, if wetlands would be affected by design
- Hazardous Materials Phase II Site Investigation

9 References

Bernalillo County Public Works Division (BCPWD)

2012 Bridge Boulevard Transportation Assessment. Prepared by Fehr & Peers.

2013 Bridge Boulevard Corridor Redevelopment Plan. Prepared by HDR Engineering, Inc.
2015 Initial Site Assessment: Bridge Boulevard Reconstruction Project, Old Coors Blvd. to 8th St. Prepared by HDR Engineering, Inc.

Mid-Region Council of Governments (MRCOG).
2015a. 2040 Metropolitan Transportation Plan.

New Mexico Department of Transportation (NMDOT)
1999 NMDOT Hazardous Waste Assessment Handbook
2000a Location Study Procedures
2000b Noxious Weed Management Guidelines
2000c Tribal/Local Government Agency Handbook
2007 NMDOT Standard Specifications
2014-19 State Transportation Improvement Program

Appendix A. Main Street Alternative Conceptual Plans
Appendix B. Transportation Assessment
Appendix C. Biological Review
Appendix D. Characterization of the Corridor
Appendix E. Initial Site Assessment
Appendix F. Agency Coordination
Appendix G. Public Involvement Summary